01

03

05

07

09

11

13

15

17

CATALOGUE 目录

变温显微测试系统(MMS)
变温电阻率测试系统(RMS)
介电温谱测试系统(DMS)
高低温原位力学测试系统(FMS)
霍尔效应测试仪(HEM)
高低温霍尔效应测试系统(HMS)
热电性能分析仪(TPA)
高低温热电参数测试系统(TMS)
辐射制冷测试系统(PDRC)

ABOUT US

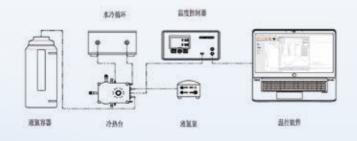
武汉重光科技有限公司成立于2018年,是一家专业从事科研和生产领域的 材料变温和测量设备的研发、生产、销售和服务于一体的高新技术企业。

公司技术实力雄厚,有华中科技大学教授任技术顾问,材料、机械等多专业 资深工程师为骨干。凭借技术优势,打造出高低温冷热台、精密加热台、热分析 测试三大产品系列,精准应用于科研领域材料和器件制备及变温测试。因性能卓 越、测量精准、质量可靠,产品极具市场竞争力,深受客户认可。

武汉重光科技有限公司立志成为一家专注、专业、创新的国际知名高科技仪器企业。旨在为世界各地科研学者和企业提供高端的仪器产品及其解决方案,助力全球科研发展。

变温显微测试系统 MMS

一 产品应用


变温显微测试系统 (MMS) 是一套结合订制显微镜系统联用的,用于地质、金属结晶,陶瓷研究的变温测试系统。在超长的物镜、高精度、高灵敏温度控制和高质量的成像技术的加持下,系统拥有更强大的样品表征变温分析能力,进一步提高了数据的质量和完整性,也极大地提升了实验观测体验。

一 产品特点

- 1. 样品台采用纯银材质, 最大程度提高热传导效率;
- 2. 适配科研标准及超长距离物镜, 支持更高倍率;
- 3. 自适应PID算法,双输出控制策略,高精度,高灵敏;
- 4. 温控软件(WinTemp)支持温度曲线编辑,实现多路温度实时采集;
- 5. CCD相机录像实时摄像记录样品状态变化。

系统组成

- 显微镜冷热台、温控器
- 显微镜、CCD相机
- 温控软件(WinTemp-MMS)
- 水冷组件、液氮组件(低温选配)、真空 组件(真空选配)

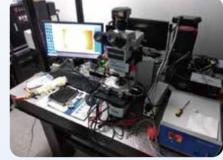
→ 系统参数

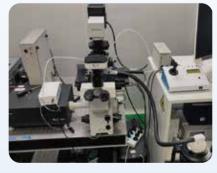
参数类型	项目	技术	参数
	型号	MMS-600	MMS-1300
	外观尺寸	140m*96mm*20mm	140m*100mm*30mm
基本参数	样品台材质	纯银	氮化铝陶瓷
全 本 シ	样品台大小	φ16mm	φ10mm
	腔体净重	0.8kg	1kg
	真空度	≤1	LPa
	制冷方式	液氮	无
	温度范围	-190℃到600℃	RT到1350℃
	温度分辨率	0.1	.℃
温度参数	控温精度	±0.	1℃
<u></u> / / / / / / / / / / / / / / / / / / /	最大加热速率	50°C/min	100°C/min
	最大冷却速率	-25℃/min	自然降温
	加热元件	加热棒	铂丝加热器
	温度传感器	铂电阻	S型热电偶
	光路类型	垂直反射	村、透射
	通光孔直径	2mm	
	观察窗个数	1	
光学参数	正面观察窗大小	φ18mm	φ32mm
	窗片材质	石	英
	最小物镜工作距离	4.5mm	8mm
	最小聚光镜工作距离	11mm	16mm
	控制箱尺寸	300mm*300mm*150mm	
	用电要求	220V/50Hz	
整机参数	控温算法	二自由	度PID
	人机交互	WinTem	p- MMS
	整机功率	200W	400W

项目	技术参数	
光学系统	Congtical数字化一体成像系统,无需目镜	
物镜	超长工作距离平场半复消色差物镜5X, NA=0.15, WD=12mm 超长工作距离平场半复消色差物镜10X, NA=0.3, WD=16mm 超长工作距离平场半复消色差物镜20X, NA=0.4, WD=12mm 超长工作距离平场半复消色差物镜50X, NA=0.55, WD=8.5mm	
物镜转换器	内向式五孔转换器,RMS	
反射照明器	内置LED光源,CRI95/4500K/宽光谱LED	
聚光镜	阿贝聚光镜	
透射照明器	内置LED光源,CRI95/4500K/宽光谱LED	
载物台	行程75*50mm,含托架框及玻璃板	
显微相机	USB3.0, 1/2.8英寸, 50fps (2560*1944)	
偏光模块 (选配)	透反射起偏器,0-360°旋转检偏器	
圆形载物台 (选配)	0-360°可旋转	

测试装置参数表

显微镜参数表


软件界面



🚂 项目案例

合肥工业大学

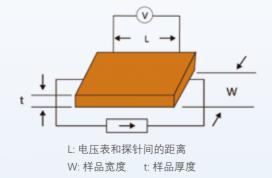
华中科技大学

浙江大学

01 | 变温显微测试系统(MMS)

变温电阻率测试系统 RMS

一 产品应用


变温电阻率测试系统(RMS)采用四探针法技术,可在高低温环境下对半导体材料、金属材料 (例如康铜、镍、铋)以及部分非金属样品(例如石墨、碳材料等)的电阻率进行测量。在材料科学 研究、电子器件研发与质量检测、超导材料研究方面均发挥了重要的作用。

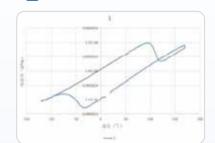
🚂 产品特点

- 1. 变温范围广, -190℃到1200℃全覆盖, 且变温过程中升降温速率可控;
- 2. 测试精度高范围广, 电阻测量范围1e-8Ω到1.2e+9Ω;
- 3. 测试数据量大且完整, 变温过程中持续采集, 电阻率数据每秒采集2次。

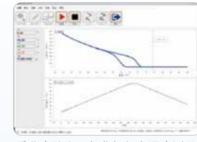
系统组成和原理

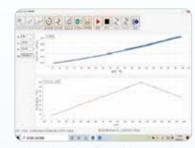
- 电阻率冷热台、温控器
- 电阻采集表
- 温控软件(WinTemp-RMS)
- 水冷组件、液氮组件(低温选配)、真空组件(真空选配)
- 测试方法: 4线法
- 计算公式: $\rho = \left(\frac{V}{I}\right) \left(\frac{W \cdot t}{L}\right)$

系统参数


参数类型	项目	技术参	参数	
	型 号	RMS-600	RMS-1200	
	外观尺寸	140mm*120r	nm*42mm	
基本参数	样品台材质	纯银	氮化铝陶瓷	
举 平少奴	样品台大小	30mm*20mm	φ16mm	
	腔体净重	1kg)	
	真空度	≤1F	Pa	
	制冷方式	液氮	无	
	温度范围	-190℃到600℃	RT到1200℃	
	温度分辨率	0.1°	С	
21 亩 4 料	控温精度	±0.1	°C	
温度参数	最大加热速率	50℃/min	100°C/min	
	最大冷却速率	-25℃/min	自然降温	
	加热元件	加热棒	铂丝加热器	
	温度传感器	铂电阻	S型热电偶	
	探针类型	固定探针 (探针前端位置和角度可调)		
电.学参数	调节方式	手动调节		
七子少奴	探针材质	钨钢或铍铜		
	探针数量	4个		
	观察窗个数	1		
光学参数	正面观察窗大小	φ41mm	φ32mm	
	窗片材质	石英	Ę	
	控制箱尺寸	300mm*300m	nm*150mm	
	用电要求	220V/50Hz		
整机参数	控温算法	二自由月	 EPID	
	人机交互	WinTemp	o-RMS	
	整机功率	200W	400W	
	电阻率测试误差	≤10	0%	
	重复性测试误差	≤3	96	
电阻率测试	电阻测量范围	1e-8Ω到 1	2e+9Ω	
参数	样品尺寸要求	L≥10mm W≤4 (适用于与块状、片状、丝		

可搭配多个品牌电阻采集表使用


CONGTICAL


测试结果

四川大学记忆合金相变温度测量

季华实验室二氧化钒相变温度测量



高温变温电阻率测试结果 (镍)

项目案例

中国石油大学

季华实验室

深圳大学

介电温谱测试系统 DMS

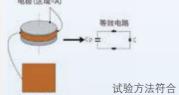
一 产品应用

介电温谱测试系统(DMS)是一款用于测量介电材料在高低温环境下不同频率的介电常数、介质 损耗、阻抗等介电参数的产品。它被广泛应用于陶瓷材料、高分子材料、压电材料、铁电材料、热释 电材料等相关领域的研究。

一 产品特点

- 1. 变温范围广,从-190℃到1000℃全覆盖,且变温过程中升降温速率可控;
- 2. 兼容多种阻抗表,测试频率可根据测试需求选择不同的测量仪表;
- 3. 测试数据量大且完整, 变温过程中持续采集, 采集时间可自由选择;
- 4. 一次变温, 可同时采集多个频率, 测试效率高。

ふ 系统组成和原理

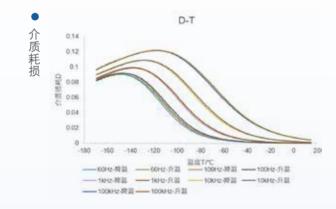

- 介电冷热台、温控器
- 控温软件(WinTemp-DMS)

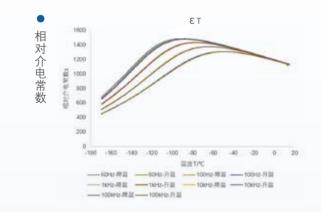
• 阻抗表

• 水冷组件、液氮组件(低温选配)、真空组件(真空选配)

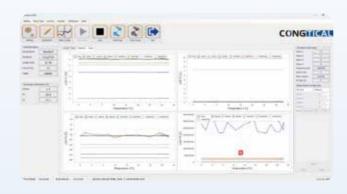
【原理】采用平行板法,其原理是通过在两个电极之间插入一个电介质材料组成一个电容器,然后测量其电容 CP和损耗D,根据输入的样品横截面积A和厚度T计算其相对介电常数ER。

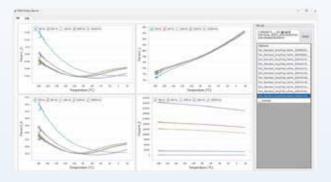
ASTM-D150测试标准。


→ 系统参数


参数类型	项目	技术	参数
	型号	DMS-600	DMS-1200
	外观尺寸	140m*120n	nm*42mm
	样品台材质	纯银	氮化铝陶瓷
基本参数	样品台尺寸	30mm*20mm	φ16mm
至平少奴	腔体净重	1k	g
	真空度	≤1Pa	
	制冷方式	液氮	无
	温度范围	-190℃到600°C	RT到1200℃
	温度分辨率	0.1	°C
	控温精度	±0.1	L°C
温度参数	最大加热速率	30°C/min	100°C/min
/血)及 多 数	最大冷却速率	-25°C/min	自然降温
	加热元件	加热棒	铂丝加热器
	温度传感器	铂电阻	S型热电偶
	探针类型	固定探针(探针前端	台位置和角度可调)
电.学参数	调节方式	手动调节	
七子少奴	探针材质	钨钢或铍铜	
	探针数量	41	\
	观察窗个数	1	
光学参数	正面观察窗大小	φ41mm	φ32mm
	窗片材质	石	英
	控制箱尺寸	300mm*300mm*150mm	
	用电要求	220V/50Hz	
整机参数	控温算法	二自由	度PID
	人机交互	WinTemp	o -DMS
	整机功率	200W	400W

参数类型	项目	技术参数
	测试物理量	相对介电常数和损耗角
	测试误差	≤7%
	重复性测试误差	≤5%
介电测试	测量量程	100mΩ - 100MΩ
参数	测试频率	4Hz-8MHz
	样品要求	5mm ≤ D ≤ 20mm 0.5mm ≤ t ≤ 2.5mm (适用圆形块状带电极的样品)




→ 测试结果

→ 软件界面

高低温原位力学测试系统 FMS

一 产品应用

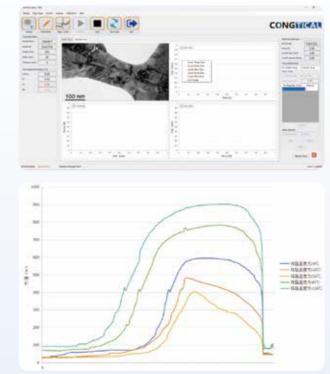
高低温原位力学测试系统(FMS)是一款针对材料在拉伸、压缩、疲劳、高温蠕变的状态下的高低温显微观察的测试系统。主要应用于有机高分子、纳米材料、金属材料和复合材料等研究领域。该设备是新材料力学性能研究的重要工具。

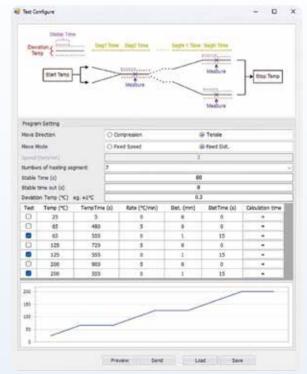
一 产品特点

- 1. 结构紧凑体积小巧,方便和显微镜、扫描电镜等其它仪器整合;
- 2. 高低温范围宽广, 最低到液氮温度, 最高可以到1200℃;
- 3. 位移精准, 拉力最大5000N, 可以进行压缩、拉伸、疲劳等多种力学测试;
- 4. 使用电脑软件操作,界面丰富,人机交互性好。

系统组成

- 原位力学冷热台、FMS机箱
- 温控软件 (WinTemp-FMS)
- 水冷组件、液氮组件(低温选配)、 真空组件(真空选配)


试验方法符合 GB/T228.3-2019,GB/T228.2-2015, GB/T228.1-2021标准。



→ 系统参数

参数类型	项目	技术参数				
	型号	FMS-500-RT	FMS-500-600	FMS-5K-RT	FMS-5K-1200	
	外观尺寸	110mm*185mm*40mm		220mm*136mm*65mm		
# + + 4 *	样品台材质	-	银	-	氮化铝陶瓷	
基本参数	样品台大小	_		-	-	
	腔体净重	1k	g	3kg		
	真空度		≤1	LPa .		
	制冷方式	无	液氮	无	无	
	温度范围	RT	-190到600°C	RT	RT到1200℃	
	温度分辨率	-	0.1℃	-	0.1°C	
温度参数	控温精度	-	±0.1°C	-	±0.1℃	
/ш/Х У XX	最大加热速率	-	50°C/min	-	100°C/min	
	最大冷却速率	-	-25°C/min	-	自然降温	
	加热元件	-	加热棒	-	铂丝加热器	
	温度传感器	-	铂电阻	-	S型热电偶	
	观察窗个数	1		-	-	
光学参数	正面观察窗大小	φ22mm		-	-	
ルテッダ	窗片材质	石英		-	-	
	最小物镜工作距离	8mm		-	-	
	控制箱尺寸	260mm*200mm*120mm				
	用电要求		220V/5	50Hz		
整机参数	控温算法		二自由	•		
	人机交互		WinTemp	- FMS		
	整机功率	200	W	400	OW.	
	最大拉力	500	N	5k	(N	
	测试模式		拉伸/压缩/疲劳	劳/高温蠕变		
	力学传感器分辨率	0.1N		1	N	
力学参数	力学传感器误差	≤0.		O.5%		
717-20-30	最大行程	40mm		70r	mm	
	位移分辨率	1μ	m	10μm		
	运行速度	0.5-10m	nm/min	0.5-6mm/min		
	样品尺寸	宽度≤10mm,长度≥20mm, 长条状样品		狗骨形状样品		

4 软件界面

07 | 高低温原位力学测试系统(FMS)

霍尔效应测试仪 HEM

产品应用

霍尔效应测试仪(HEM)可用于一般半导体材料的霍尔系数、电阻率、电子迁移率、载流子浓度的常温测量,是研究半导体和电子材料的电子特性的重要工具。

🖵 产品特点

- 1. 高精度电流源,输出精度可达0.1µA,可测量大部分半导体材料;
- 2. 高精度电压源,24位ADC采集,精度可达μV级;
- 3. 可靠的重复性, 软硬件设计多重滤波, 使测量数据更稳定, 确保每个实验数值均为多次测试的平均值;
- 4. 简约大气的外观设计,仪器连接操作简单,完成样品信息设置后,用户可一键点击测试,即可同时得到电阻率、载流子浓度、霍尔系数与方阻数据;
 - 5. 测试速度快, 支持快速切换电流与磁场方向, 通过范德堡法进行数据处理。

系统组成和原理

- 霍尔效应测试主机、HEM机箱
- 恒流源表
- 磁场仪
- 样品板,标样ITO

【原理】范德堡测试方法:专门为测量任意的二维样品设计的。这种方法的优点是它不需要知道样品的任何尺寸,范德堡方法常常通过一组电阻的测量计算电阻率,方法假设在样品的边缘有接触点。

试验方法符合SATM-F76-08标准。

→ 系统参数

参数类型	项目	技术参数
	型号	HEM
基本参数	外观尺寸	530mm*230mm*280mm
	腔体净重	20kg
山兴	探针材质	铍铜
电学参数	探针数量	4个
	控制箱尺寸	350mm*350mm*150mm
	用电要求	220V/50Hz
整机参数	控温算法	-
	人机交互	WinTemp- HEM
	整机功率	200W

参数类型	项目	技术参数
	磁场强度	0.6T
	磁场稳定性	±1%/年
	输出电流	1nA-200mA
	载流子迁移率	1-10^5 cm^2/(V*sec)
霍尔测试参数	载流子浓度	10^8 - 10^22 / cm^3
重小州瓜乡奴	电阻率	10^-4 - 10^6 Ω*cm
	重复性	≤3%
	样品尺寸	10mmx10mm - 20mmx20mm 厚度 10nm-1mm

4 软件界面

🕝 样品台和样品装夹

• 探针装夹

• 焊线装夹

09 | 霍尔效应测试仪(HEM)

高低温霍尔效应测试系统 HMS

一 产品应用

半导体材料研究: 通过研究电子迁移率、载流子浓度, 了解半导体材料随温度变化规律和散射运 作机制、主要集中在半导体圆晶制程上面及太阳能电池等。

磁性材料研究: 研究霍尔效应与磁电阻效应, 为磁存储、磁传感器等领域的发展提供了重要支 持。此外,对于一些自旋电子学材料,变温霍尔效应测量有助于研探索新型自旋电子学器件的应用潜 力。

其他材料:如高温超导材料、二维材料的相关研究。

一 产品特点

- 1. 变温速率快: 支持快速切换电流与磁场方向, 通过范德堡法进行数据处理, 领先市场同类产品;
- 2. 高精度测量: 最高可实现±0.1℃的控温精度, 全温度范围可实现±0.3℃控温;
- 3. 高均匀性:误差不超过1%;
- 4.自动化控制功能:可通过触摸屏和上位机进行测试,软件界面简洁明了,直观易懂,操作简单。

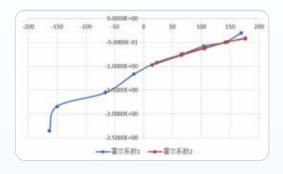
🚂 系统组成和原理

- 变温霍尔主机、HMS机箱
- 数据采集表
- 温控软件(WinTemp- HMS)
- 水冷组件、液氮组件(高温选配)、 真空组件(真空选配)

方法常常通过一组电阻的测量计算电阻率,方法假设在样品的 边缘有接触点。

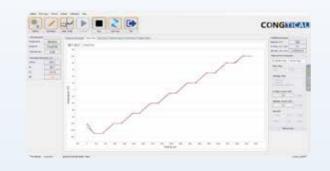
试验方法符合ASTM-F76-08标准。

系统参数



参数类型	项目	技术参数	
	型号	HMS-200	
	细分分类	HMS-200A HMS-200B	
基本参数	外观尺寸	530mm*230mm*330mm	
±-1-2 x	样品台材质	纯银	
	样品台大小	30mm*30mm	
	腔体净重	25kg	
	真空度	≤1Pa	
	制冷方式	液氮	
	温度范围	-190℃到200℃ RT到200℃	
	温度分辨率	0.1℃	
温度参数	控温精度	±0.1°C	
	最大加热速率	50°C/min	
	最大冷却速率	-25℃/min 自然降温	
	加热元件	加热棒	
	温度传感器	铂电阻	
据针材质 电学参数		铍铜	
CJSX	探针数量	4个	
	控制箱尺寸	350mm*350mm*150mm	
+61= A M	用电要求	220V/50Hz	
整机参数	控温算法	二自由度PID	
	人机交互	WinTemp- HMS	
	整机功率	400W	
	磁场强度	0.6T	
	磁场稳定性	±1%/年	
	输出电流	1nA-200mA	
霍尔测试参数	载流子迁移率	1-10^7 cm^2/(V*sec)	
	载流子浓度	10^8 - 10^22 / cm^3	
	电阻率	10^-4 - 10^8 Ω*cm	
	重复性	≤3%	
	样品尺寸	10mmx10mm - 20mmx20mm 厚度 10nm-1m	m

测试结果


ITO标样测试结果

铋样品测试结果

软件界面

11 | 高低温霍尔效应测试系统(HMS)

热电性能分析仪 TPA

一 产品应用

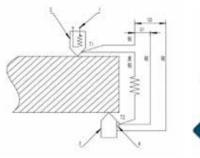
热电性能分析仪(TPA)可用于一般热电材料的Seebeck系数常温测量,半导体制冷片的ZT值和 电阻值测量,是热电材料和器件研究生产的重要工具。

产品特点

- 1. 高精度电流输出, 范围0.1uA~200mA。
- 2. 快速测量, 塞贝克测试 < 10s, zT值测量 < 40s。
- 3. 仪器体积小巧, 方便携带, 可选配续航电池。
- 4. 功能丰富,具备Seebeck系数测量、器件ZT值、电阻测试和恒流源输出功能。
- 5. 软件界面简洁、操作简单、结果显示明确、便于观测。
- 6. 具备数据存储功能, 便于历史数据对比。
- 7. 具备可靠的数据重复性和稳定性。

软件界面

电阻测试 18:50 mA 电压值 mV 样品编号 电流值 电阻值 $\mu\Omega$

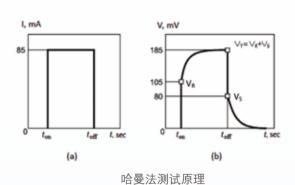

电阻率测试界面

系统原理

Seebeck系数测试功能(端口A) ●

Seebeck系数双端探笔,集成了冷探针和热探 针。其中热探针包含镀金探笔头、热电偶和加热

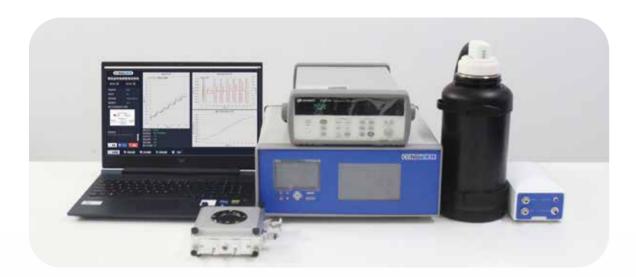
测试过程中给Seebeck热探针加热,使热探针和 冷探针之间始终保持一个固定的温差T,同时记录冷 热探针之间的热电势V、根据公式即可计算出材料的 Seebeck系数值。



塞贝克测试探笔尺寸图 (探笔间距5mm)

半导体制冷片参数测量(端口B) ¶

哈曼法测试原理: 给样品通一个恒定的电流 值. 根据帕尔帖效应热电材料会在两端吸热和放 热,并产生一个温差电压V。。当温差和热传导达到平 衡时记录此时的电压V_r, V_r包含器件电阻的电压V_a和 V。。接着切断电流,V,同时消失,而V。逐渐减小。记 录此时刻前后电压变化曲线, 使用数据分析方法找 到V_p。V_s/V_p则代表器件的ZT值。



系统参数

参数类型	项目	技术参数
基本参数	型号	TPA
	控制箱尺寸	260mm*200mm*120mm
整机参数	用电要求	220V/50Hz
	整机功率	50W
	样品种类	块体、薄膜或者是丝状样品 长度 > 5mm,样品电阻值≤10kΩ
0 1 1 7 11	Seebeck系数测量范围	± (1-1000) uV/K
Seebeck系数 测量	冷热端温差	25℃
八里	标准样品	镍带
	系统配件	双端探笔
	电阻测量范围	1uΩ-5KΩ
	电阻测量准确性	≤1%
中四河亭	电压测量范围	0-2.5V
电阻测量 及恒流源输出	电压测量准确性	1uV
3 (1_3)(3) (13) —	恒流源输出范围	0.1uA-200mA
	系统配件	电阻率测试夹具
	恒流源准确性	≤1%
V = 4-4-1-A 11	电阻测量范围	0.1Ω-100Ω
半导体制冷片 电阻测量	误差范围	5%
七四次主	重复性误差	0.30%
	标准样品	TEC-12704
半导体制冷息	ZT值测量范围	0-2
ZT值测量	范围误差	3%
	重复性	0.40%
	系统配件	开尔文夹及引线

13 | 热电性能分析仪(TPA) 热电性能分析仪(TPA) | 14

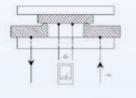
高低温热电参数测试系统 TMS

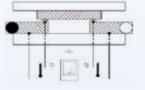
一 产品应用

热电材料是一种将热能和电能直接相互转换的功能材 料。Seebeck系数、电阻率和热导率是热电材料研究的三个 主要参数。高低温热电参数测试系统 (TMS) 广泛用于测量 高低温条件下,金属和半导体材料的Seebeck系数和电阻 率、测试的对象包括块体样品、丝状样品和热电薄膜样品 (厚度≥50nm)。在热电材料研究领域有广泛的用途。

- S = Seebeck coefficient or thermo power of the material [mV/K]
- $\sigma = \text{electrical conductivity of the material } [1/\Omega m]$ $\lambda = \text{total thermal conductivity of the material}$ [W/(m-K)]
- T = absolute temperature.

🚂 产品特点

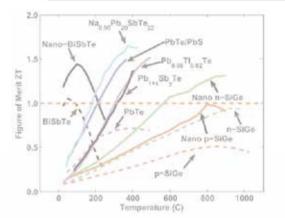

- 1.先进的动态测量技术,测试数据准确可靠;
- 2.设备体积小巧紧凑, 使用方便;
- 3.更高的变温速度, 宽广的温度测试范围;


4.友好的测试界面,自动化测量,可无人值守; 5.智能化的数据存储及处理。

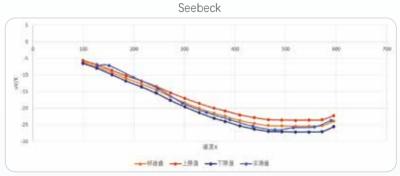
系统组成和原理

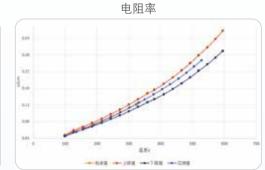
- 热电测试冷热台、TMS机箱
- 液氮组件(低温选配)、真空组件(选配)
- 数据采集表 (默认34970A)

【原理】系统采用动态法和四线法分别测量材料的



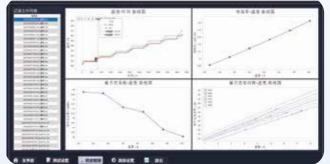
动态法测试过程中给试样两段施加一微小的连续变化的温差,测量样品两端热电势变化,温差ΔT和热电势之间呈线


系统参数


参数类型	项目	技术参数	
	型号	TMS-	-300
	细分分类	TMS-300A	TMS-300B
	外观尺寸	140mm*120mm*42mm	
基本参数	样品台材质	纯银	
	样品台大小	30mm*	30mm
	腔体净重	1k	g
	真空度	≤1	.Pa
	制冷方式	液氮	无
	温度范围	-190℃到300℃	RT到300℃
	温度分辨率	0.1℃	
温度参数	控温精度	±0.2°C	
温及少数	最大加热速率	50°C/min	
	最大冷却速率	-25°C/min	自然降温
	加热元件	加热棒	
	温度传感器	铂电阻	
	观察窗个数	1	
光学参数	正面观察窗大小	φ41mm	
	窗片材质	石英	
	控制箱尺寸	350mm*350mm*150mm	
	用电要求	220V/50Hz	
整机参数	控温算法	二自由度PID	
	人机交互	WinTem	p- TMS
	整机功率	400)W

参数类型	项目	技术参数
	Seebeck系数分辨率	0.05μV/K
	电阻率分辨率	0.05μΩ·m
	Seebeck测试范围	5-5000μV/K
热电测试	电阻率测试范围	'0.1 - 10^6μΩ*m
参数	Seebeck相对误差	≤5%
	电阻率相对误差	≤7%
	样品尺寸	长(10-18)mm, 宽(3-5)mm, 厚度≥50nm


测试结果



TMS镍带测试结果

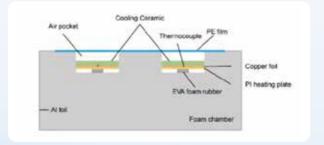
软件界面

15 | 高低温热电参数测试系统(TMS)

辐射制冷测试系统 PDRC

一 产品应用

辐射制冷测试系统 (PDRC) 是被动式日间辐射制冷测试系统,基于材料对太阳光 (0.3-2.5μm) 的高反射与大气窗口波段 (8-13μm) 的红外辐射特性,精准测量材料的辐射制冷功率密度。系统在绝热环境中横向对比不同材料的制冷性能,同步记录热通量、太阳辐照度与环境温湿度,并通过自适应温控模块模拟动态热响应。已应用于建筑节能、5G基站/光伏组件无源散热、太空设备热管理及智能纺织材料研发,支持多场景数据对比,为工程落地提供高可靠性验证。


🔁 产品特点

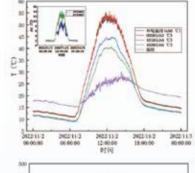
- 1. 测温准确,控温精度高,温差控制可以达到0.1℃;
- 2. 设备使用简单方便,可灵活改变温度测量对象,以方便试验;
- 3. 直观友好的软件使用界面, 自动存储测试数据;
- 4. 记录完整全面的环境参数以供后期分析。

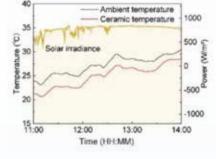
☑ 系统组成和原理

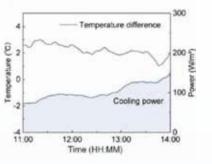
- 辐射制冷测试装置、温控采集箱
- 气象站、温控软件(WinTemp-PDRC)

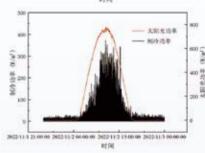
【原理】对样品背面的加热片供电加热,同时通过 PID温控系统调节加热功率,使得样品表面温度与环 境温度保持一致。在这种设定下,热对流和热传导 的影响被最小化或消除,因此加热片提供的加热功 率即代表了样品在当前环境条件下通过辐射方式损 失的功率,也就是样品的辐射制冷功率。

→ 系统参数

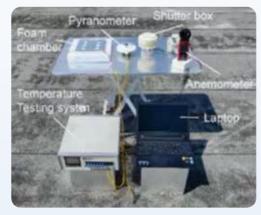

参数类型	项目	技术参数
基本参数	型号	PDRC
	外观尺寸	560mm*560mm*250mm
	腔体净重	5kg
整机参数	控制箱尺寸	350mm*350mm*150mm
	人机交互	WinTemp- PDRC
	整机功率	50W
辐射制冷 测试参数	温度范围	-10℃到80℃
	温控精度	±0.2°C
	制冷量范围	10mW~1000mW
	制冷量显示精度	1mW
	样品尺寸	≤100mm*100mm,厚度<1mm
	标准样品	石膏板 (CaSO4) ,100mm*100mm*1mm
	测定精度	±5%
	控温回路	3路


项目	技术参数
风速传感器	量程: 0~70m/s; 分辨率: 0.1m/s;
	准确度: ±(0.3+0.03V)m/s, 起动风速: ≤0.8m/s;
风向传感器	量程: 0~360°; 分辨率: 1°;
	准确度: ±3°, 起动风速: ≤0.8m/s;
大气温度	量程: -50~100℃; 分辩率: 0.1℃;
	准确度: ±0.5℃
大气湿度	量程: 0~100%RH; 分辨率: 0.1%RH;
	准确度: ±5%RH
大气压力	量程: 500~1100hpa; 分辨率: 0.1hPa;
	准确度: ±0.3 hPa
总辐射传感器	量程: 0~1500W/m2; 分辨率: 1W/m2;
	准确度: ±5%;


气象站(选配)参数表


测试装置参数表

ᢇ 测试结果



□ 项目案例

国防科技大学

郑州大学

17 | 辐射制冷测试系统 (PDRC)

部分合作单位

COOPERATIVE PARTNER

美CETC ELLITOP BOE ♥ 合聚

中国工程物理研究院

温控有度 探索无界

